

Gas Cloud Kills Thousands At Lake Nyos, Africa: Identifying the Culprit and Saving Lives in the Future

by Michele Tuttle

U.S. Geological Survey, Denver Colorado

Collaborators

Joseph Devine, William Evans, George Kling, John Lockwood, Gregory Tanyileke

Funding

U.S. Agency for International Development
U.S. Geological Survey
National Geographic

The Killer Lakes of Cameroon

1984 Lake Monoun, 37 fatalities

1986 Lake Nyos, 1700 fatalities

Cameroon Volcanic Line

Lake Nyos Lake Monoun

East African Rift

Lake Kivu

After the calamity: the waters of Nios, which once shimmered a welcoming blue, have now turned a drab shade of reddish-brown

CAMEROON

The Lake of Death

Volcanic Gas Explosion Model Nyos Villiage Volcanic Gas Accumulation and Release Model CO2 CO₂ Charged Nyos Villiage Magmatic CO₂

deaths 19 km from lake

1 km³ gas

Questions

- 1. What is the gas
- 2. What is its source
- 3. How is it transported
- 4. Where is it stored
- 5. How is it released

Characteristics of Gas Dissolved in Lake Nyos

CO₂ comprises >99% of total gas concentration

$$\delta^{13}C_{CO2} = -3.3 \% (PDB)$$

C¹⁴ dating indicates no modern carbon

Trace (<1%) CH₄, He, Ar, N₂

 $He^{3/4} = 6 \times atmospheric ratio$

Magmatic source of CO₂

Iherzolite nodule

1986 Water Compositions

Hypothetical diatreme structure beneath Lake Nyos

CO₂-rich spring near lake

3-D image created by Halbwachs, 2002

'98 datum calculated from Kling et al. 1998

Water Composition 1986 to 1990

'98-99 data calculated from Kling et al. (1998;2000)

CO₂ + recharge fluid surface runoff precipitation

Temperature profiles

Chemical profiles

Mineral equilibria modeling Mass balance calculations

Heat Budget

Hydrologic budget

Inferred Characteristics of Recharge Fluid 1992

Chemical Composition

TDS ~1800 ppm

Fe + Mg ~68% cation molarity

HCO₃ only major anion

CO₂ 360 - 650 mmol/kg

 CO_2 flux = 2.5×10^8 mol/yr

Fluid flow 17 - 27 liters/sec

Temperature 26.1 - 28.6 °C

120 yrs to saturate below 50 m12 yrs to saturate bottommost layer

Catastrophic Degassing of Lake Nyos

Observations

Before 9:00 PM: Bubbling noise from lake

White cloud over the lake

9:00 PM: Loud explosion from the lake

People die in Nyos Village

Catastrophic Degassing of Lake Nyos

- T1-T4 bubbling noise from lake white cloud over the lake
 - T5: loud explosion from the lake people die in Nyos Village

Degassing Theory

Lake Nyos

270 Mm³ CO₂ ('92)

5 pipes

3-5 years

Lake Monoun

9.5 Mm³ CO₂ ('92)

9 pipes

2 years

figure and data from Halbwachs http://perso.wanadoo.fr/mhalb/nyos/project/principle.htm

French Degassing Experiment 1995

Michael Halbwachs

208 m pipe

deploying platform

21 m high fountain

risk from degassing CO₂

photos by Bernard Cannet March, 1995

Degassing Lakes Nyos

Degassing Lake Nyos began in January 2001,

(Kling, 2001)

Halbwachs, 2008

August, 1986

October, 1986

Lake Taupo

Key Variables

Deep stratified Lake

Equatorial climate

Permeable conduit into bottom

Steady magmatic CO₂ Source
Time

Lake Kivu and Nyragongo Volcano

lava dammed lake in East African rift

CO₂ in East African Rift

Mazuko in 1977 lava flow from Nyragongo

Snuffing of flame by CO₂

	Lake Nyos	Lake Kivu*
Area (km²)	1.58	2060
Maximum depth (m)	210	500
Lake Volume (km ³)	0 .18	580
CO ₂ bottom water (mol/kg)	360	84
CO ₂ volume (km ³)	0.5	315
CH ₄ bottom water (mol/kg)	1.1	16
CH ₄ volume (km ³)	0.002	63
pH bottom water	5.2	7.0
TDS bottom water	1800	5700
Water Column Stability (j/m²	²) 64,000	340,000

^{*}Kivu data from 1988

'02 Lava flow into Lake Kivu

NASA/JPL/NIMA, 2002
Combination of space-born
thermal emission and
reflection radiometer
with Landsat

self siphoning

